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Abstract

The Operational Power Reactor Regime (OPRR) (which is distinct from the Ignition phase) is in-

troduced as a major challenge for magnetic fusion. The necessity for a low recycling regime and a

wall-stabilized plasma for OPRR is emphasized.

For development of the OPRR, Spherical Tokamaks (ST) are uniquely positioned as high- Z small

volume devices with good plasma confinement and stability. It is shown that LiWall ST devices with a

low-recyling plasma and wall stabilization have the opportunity for ignited operation in a self-sustained

magnetic configuration driven by the bootstrap current.

The use of the ST in developing the OPRR would provide a new vision for a Component Test Facility

(CTF) as a compact (30 m [ ) ignited ST (0.5 GW of fusion power) with high (5-8 MW/m \ ) neutron wall

load and maximum (up to 95 %) use of fusion neutrons for tritium breeding.

A compact Lithium Tokamak Experiment (LTX) is being proposed to address the basic plasma

physics and technology issues of the low recycling regime, controlled by a lithium wall surface.
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1 Basics of Opereational Power Reactor Regime.

Important approximation for the fusion power

In the reactor, � -particles fusion power
covers all losses

�������
	������ �
	����
�
����� �

� �
[GW] - power in � -particles,

�
	�� [GJ] - thermal plasma energy,
� [MPa] - averaged pressure,
� [1000 m [ ] - plasma volume.

Fusion power is proportional to the
plasma pressure
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1.1 Four "betatau" formulas

Four important formulas come immediately from
� - . � � \

1.
� \�� Z �  ��� ) — ignition condition (

�
is in [T])� � �  � �	� � � [MPa � s] � 
 ����  � �10 � � � \ "��

2.
��-/. ��� � � \� — DT power of the fusion reactor

(high  � � 1.5 sec is bad for power production)

3.
������� � �

)
����������� �

�
0

� \� ������� —
needed external igniting power
(high �� � 3 sec is necessary for 10-

15 sec of ignition phase)

together with

4. !#"�$ �&%(' � � �*)+��� � 0
��- .

)
$-,-.0/21

��� � ) -

cost ! of a reactor vs $ -
value of electricity produced
(assuming 30 years of uninter-
rupted energy production)
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1.1 Four "betatau" formulas (cont.)

Typical examples of Fusion Power Reactor parameters:

With reasonable design parameters:��-/. � ) GW � � � 0 T � � � ) � �43 0�� � m [ �
a Fusion Power Reactor should be ignited at high ,� and moderate Z�� ������� � �

sec � �5����� � �76 3 � ) MW �
and then must operate at an enhanced Z and reduced  �

 � �	� �8�93:� � �,�
sec � Z � ���8� 0;3 � �<� �

in order to fit the "betatau" requirements.

Having twice smaller volume than, e.g., ITER, it would be 10 times more
powerful in order to fit a cost

! � $ ! � 3 � & � � ��=
consistent with $ -value of electricity produced.
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1.2 OPRR and Ignition are two distinct plasma regimes.

Ignition and operation phase have totally different plasma regimes.
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Development of OPRR remains a
challenge for magnetic fusion.
New regimes are necessary.
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1.3 OPRR requires a low recycling plasma.

Conventional plasma is controlled by wall fueling.

LTX simulations, no Li at walls
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OPRR needs a different regime.
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1.3 OPRR requires a low recycling plasma (cont.)

Core fueling + Li absorbing wall offers enhanced edge temperature.

LTX simulations
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6 no ITG turbulence,
6 convection is a loss channel
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6 no sawtooth oscillations,
6 second stability regime (no
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LiWalls add more:
6 wall stabilized plasma,
6 high- Z ,
6 high bootstrap current,
6 outflux of impurities,
6 . . .

LiWalls are promising for OPRR.
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1.3 OPRR requires a low recycling plasma (cont.)

LiWalls require plasma to be aligned with the wall surface (no divertor)

Good absorpsion
by the wall

Plasma

Electron and ion edge

comparable
temperatures are

Sheath layer
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Full reflection
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Low electron edge
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Sheath potential near the walls is determined by the electron energy,
� � � � � ,�� � .
LTX targets comprehensive studies of plasma-LiWall physics.
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1.3 OPRR requires a low recycling plasma (cont.)

LiWalls offer (second stability core) + (wall stabilized) plasma

<
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LTX may potentially observe the effect of LiWalls on sawteeth
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2 Ignited ST (IST) and the Component Test Facility (CTF).

Spherical Tokamaks are unique in merging OPRR and Ignition Phase
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Ignited ST is a practical approach for development of OPRR
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2.1 High- Z are achieved experimentally on ST.

START, NSTX, MAST demonstrated OPRR relevant beta (35 %)
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By eliminating Te-peaking and IRE, LiWalls can make high-Z robust
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2.2 Ignited CTF rather than externally driven "burning" device.

High-Z Spherical Tokamaks are naturally suitable for ignition

LiWall Ignited ST ( � 	�� =11 MA,
�

=3 T at R=1.25 m)
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2.2 Ignited CTF rather than externally driven "burning" device. (cont.)

Tritium breeding, in fact, requires ignition for compact CTFs
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IST can provide 95 % utilization of neutrons for tritium breeding
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2.3 IST and bootstrap current alignment

IST appears to be consistent with the necessary bootstrap current
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2.4 Pellet fueling of low recycling IST

IST has the best magnetic configuration for pellet injection
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3 Lithium tokamak experiment.

LTX is a very first step for developing a wall controlled plasma
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3.1 LTX plasma physics objectives

Core fueled plasma is a key physics objective of LTX

It includes:
6 studies of recycling, sheet potential and other plasma-wall physics
6 identification of the basic scale lengths for the plasma edge (charge

exchange, ionization, ion larmor radius, banana width, etc).
6 elimination of the wall dominance in the plasma fueling,
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6 development of a start-up scenario in presence of absorbing walls,
6 development of a quasi-steady, pellet fueled plasma.

Flowing lithium is not a target of LTX.
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3.1 LTX plasma physics objectives (cont.)

Scientific objectives of LTX are unique particle transport studies:

6 Neoclassical physics can be illuminated in a low recycling LTX
(all trapped particles are predominantly at the plasma edge).

6 elimination of the dominance of thermo-conduction in energy losses,
6 test of Okhawa’s type dependence ( � , 
 ) in the particle transport,
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6 low edge 7 (< 3) regimes in presence of a pumping wall

High- Z is not a present target of LTX.

Leonid E. Zakharov, LTX Meeting at Office of Fusion Energy Sciences, DoE, Feb. 12, 2003, Germantown, MDPRINCETON PLASMA
PHYSICS LABORATORY

PPPL 20



3.2 Theory backup

Advanced tools are necessary for challenging physics of LTX plasma

6 ESC equilibrium and reconstruction code
6 TRANSP, ASTRA transport simulation and analysis code
6 DCON, BALLOON stability codes
6 ORBIT particle orbit code

all already are linked together.

In addition collaboration with LLNL (UEDGE code) will provide the plasma
edge analysis.
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4 New vision of mission of CTF, based on an Ignited ST

IST can potentially develop 3 major objectives of magnetic fusion, i.e.

1. Operational Power Reactor Regime (in a minimal volume facility)

2. First Wall with reactor relevant wall loading

3. Tritium cycle

Being a mini-reactor, IST will leave to DEMO an extension to
6 OPRR in a full size plasma configuration (conventional aspect ratio)
6 FW with the full reactor functionality and a shielded neutron zone
6 Full scale Tritium Cycle with the reactor scale power and rate.

At this moment,

experimental tests and calibrations are desperately needed.

LTX is proposed as a first device extending lithium technology research

to systematic studies of low recycling plasma physics.
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Appendix. Ignition power estimate.

Ignition phase requires high  � and low- Z
The best scenario of ignition (e.g., low recycling regime with a flat � and
a raising density)
� �
	��
��� � ������� ' ��� 3 �
	���� ��� ��� � � � 
 � � ������� ' ����������� !�� \ 3�� & �
���

�
	��
�
	�� �������

!2)��<� &

leads to third important formula

����� � � �
)

����������� � �� �
��-/. ��� � � � � � � � \� ������� �

which gives a minimal estimate for the external heating power
� �����

(The subscript
�������

specifies parameters at the ignition phase)
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